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The nonlinear growth of Tollmien-Schlichting disturbances in a boundary layer is 
considered as an initial-value problem, for the unsteady two-dimensional triple deck, 
and computational and analytical solutions are presented. On the analytical side, the 
nonlinear properties of relatively high-frequencylhigh-speed disturbances are 
discussed. The disturbances travel at  the group velocity and their amplitude is 
controlled by a generalized cubic Schrodinger equation, during a first stage of the 
nonlinear development. The equation, which has been studied in other contexts also, 
is integrated numerically here, and the resulting large-timelfar-downstream 
behaviour is then deduced analytically. This behaviour comprises an exponentially 
fast growth and spreading of the disturbance, the spreading being governed only by 
an integral property of the initial disturbance. Secondary sideband instability does 
not occur, and there is no conclusive sign of a chaotic response, during this stage, 
although the three-dimensional counterpart could well yield both phenomena. In the 
subsequent (and more nonlinear) second stage further downstream, however, where 
the amplitude is larger, spiked behaviour and spectrum broadening can occur because 
of vorticity bursts from the viscous sublayer. Computationally, two forms of 
numerical solution of the triple-deck problem, one spectral, the other finite-difference, 
are given. The results from each form tend to support the conclusions of the 
high-frequency analysis for initial-value problems, and recent calculations of the 
two-dimensional unsteady Navier-Stokes equations also provide some backing. One 
implication is that the unsteady planar interacting-boundary-layer equations, or a 
composite version, can capture much of the physics involved in the beginnings of 
boundary-layer transition although, again, three-dimensionality is undoubtedly an 
important element which will need to be incorporated eventually. 

1. Introduction 
Numerousexperiments concerned with the major features oftransition to turbulence 

in boundary layers have investigated the development of sizeable disturbances 
progressing downstream of either an initial impulse or a maintained forcing. Prime 
examples are the development of turbulent spots (Wygnanski, Sokolov & Friedman 
1976) and the disturbed flow produced by a vibrating source or system of sources 
(Saric, Kozlov & Levchenko 1984; Gaster 1984; Klebanoff, Tidstrom & Sargent 1962). 
The travel, growth and spreading of such disturbances downstream and the subsequent 
transition of the boundary layer have remained largely beyond theoretical description 
for a long time, however, although large-scale computation does model certain of the 
observed features. The complicated practical features associated with the progress 
of sizeable disturbances, in time and space, provide ultimately the main motivation 
or goal for the present work, which is concerned with re-emphasizing the study of 
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initial-value problems in disturbed boundary layers. As a convenient starting point 
below we take two-dimensional unsteady flow since, even though in reality three- 
dimensionality matters greatly, the two-dimensional case can act as a useful test bed, 
numerically or otherwise, for many of the theoretical predictions involved. The 
current work then has two principal aspects to it, one analytical and one computational, 
with both aspects addressing the nonlinear unsteady triple-deck problem. As is shown 
by Smith (1979a, 3) and Smith & Burggraf (1985, hereinafter referred to as SB) this 
nonlinear viscous-inviscid problem governs the important first stages in the nonlinear 
development of TollmienSchlichting disturbances in an attached boundary layer. 
Emphasis is given below to the analytical aspects, concerning in particular the 
formation of high-frequency high-speed nonlinear disturbances from an initial state. 
The computational aspect, again for initial-value problems, is described in Appendix 
B. 

The initial-value problem for a boundary layer, as governed by the triple deck at  
high Reynolds numbers Re, is significant especially for its predictions of the behaviour 
downstream of the initial disturbance. The problem is a difficult one generally, 
however, because the maximum growth rate of infinitesimal disturbances is not 
relatively small and so, in contrast to some other contexts, an assumption of weak 
growth, coupled with weak nonlinearity and slow modulation, is not valid in general. 
A global nonlinear initial-value problem for an arbitrary initial disturbance is instead 
necessarily a full nonlinear, and hence computational, problem (see Appendix B). 
Again, strictly one cannot turn to the option, available for parallel-channel-flow 
studies (Stewartson & Stuart 1971 ; Hocking & Stewartson 1972) for instance, of 
investigating the weak growth which occurs at a finite critical Reynolds number, 
because at finite Reynolds numbers the basic boundary layer is a fully nonparallel 
entity, a fact which strictly rules out the existence of a unique critical Reynolds 
number anyway (Smith 1979a, although numerically the parallel-flow approximation 
turns out to work reasonably well in practice). The approach we adopt analytically 
in the present study, therefore, partly to compare with the fully computational 
aspect, is to regard the initial disturbance as a nonlinear packet of relatively 
high-frequency waves. With that restriction, the growth rate is relatively small and 
the slow nonlinear modulation of the wave packet can be analysed as the packet 
travels downstream, at the (real) group velocity, from its starting state upstream. 
The susceptibility of such a travelling disturbance to a Benjamin-Feir sideband 
instability, conjectured by Gaster (1984), can also be examined then. The relatively 
high-frequency regime, which is studied mainly in an attempt to gain more theoretical 
insight into the crucial nonlinear initial-value problem, does exhibit a number of 
intriguing properties of its own. These nonlinear properties could be quite significant 
in practice, since the high-frequency part of an initial disturbance travels the fastest, 
having such short lengthscales that the group velocity is relatively large. Moreover, 
it is found that the corresponding amplitude increase remainsunsuppressednonlinearly 
for a large distance downstream, whereas some lower-frequency nonlinear disturbances 
soon stabilize by attaining an equilibrium amplitude (see Smith 19793 and SB). 

The unsteady planar subsonic boundary layer is considered locally here, this being 
equivalent to the incompressible case in view of a Prandtl-Glauert transformation ; 
we note that the supersonic counterpart, in contrast, is stable except for relatively 
long waves (Ryzhov & Zhuk 1980; Duck 1985). The central unsteady triple-deck 
problem of concern ($2) deals with scaled values of the velocity U,(U, v), the Cartesian 
coordinates lD(x, y), the pressure variation pD vZDp and the time lDtlUD, where U D ,  
l,, pD stand for the typical dimensional flow speed (e.g. the local free-stream value), 
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the lengthscale (e.g. airfoil chord) and the fluid density respectively. The basic 
boundary layer is assumed (usually) to be on a flat surface y = 0 locally and its 
nonlinear stability properties are examined near a typical station x of O( 1) .  Section 2 
describes the behaviour of a relatively high-frequency, short-wavelength disturbance 
packet as it travels downstream, the behaviour being controlled by a generalized 
Schrodinger equation for the pressure, during the first stage of the nonlinear 
development. The timescale t here satisfies Re-: % t 9 Re-: (see also SB), the pressure 
is relatively large and overall the disturbance size is much greater than the basic flow 
in the main region of interest near the surface. Section 3 then extends the analysis 
to nonparallel flows where, for example, there is a distortion of the solid surface 
present or where the basic flow is a breakaway separation. The pressure solution and 
the large-timelfar-downstream behaviour of the disturbance are discussed in $54 and 
5.  In  particular, the disturbance amplitude is found to grow and spread at 
exponentially fast rates, with the amplitude dependence taking on an expanding 
elliptical shape whose precise size is governed by an integral property of the initial 
condition. The sideband instability mentioned earlier does not occur in the present 
context, although it cannot be ruled out for more general situations. Again, during 
the subsequent second stage, which occurs further downstream and is more nonlinear, 
bursting from the viscous sublayer can lead to spectrum broadening in addition, and 
other forms of spiky secondary instability are also possible. Further comments are 
given in $6, including comparisons with computations, while the Appendices A and 
B describe, in turn, certain properties of the high-frequency amplitude equation and 
computational time-marching solutions of the full triple-deck problem. A conclusion 
drawn is that the two-dimensional unsteady interacting-boundary-layer equations, 
or a composite version, can capture much of the physics involved in the beginnings 
of boundary-layer transition, although again the important element of three- 
dimensionality will need to be incorporated in due course. 

We would add here that the high-frequency/high-speed regime considered below 
corresponds in effect to movement downstream of the lower branch (SB), towards 
the upper branch of the neutral curve based on infinitesimal-perturbation theory, for 
the Blasius boundary layer for example. Many of the properties found hold across 
the entire distance to the upper branch and beyond, thus enlarging the scope of the 
theory. Similar properties are expected to hold in other basic flows also. Further, this 
regime appears to be the second broad regime open to the analytical study of 
nonlinear wave packets in through flows, the first being that developed by Stewartson 
& Stuart (1971) and Hocking & Stewartson (1972) for near-critical properties. Unlike 
the latter, however, the high-frequencylhigh-speed regime is not restricted to (the 
few) parallel basic flows, and this would seem to be a considerable advantage. 

2. Flow structure and governing equations 
The nonlinear behaviour of amplifying Tollmien-Schlichting disturbances, in an 

otherwise attached boundary layer, is governed initially by the triple-deck structure. 
This has the short lengthscale O(Re-i) locally in 2, the critical timescale is fast, 
t = O(Re-:), and the central problem of the fully nonlinear instabilities is to solve the 
unsteady boundary-layer equations 

(2.1 a ,  b )  
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holding in the lower deck near the surface, Here y = Re-1 Y, x = RedX,  t = RedT,  
u = RedU, p = RedP(X,  T )  and !?' is the scaled stream function. Equations (2.1 a ,  
b)  follow formally from the Navier-Stokes equations, with the unknown pressure P 
being independent of Y .  The boundary conditions appropriate for no slip at the 
surface and matching with the main deck are 

U = Y = O  a t Y = O ,  

U -  Y + A ( X , T )  as Y-tco 

(2 . l c )  

( 2 . l d )  

respectively, where the function A ( X ,  T )  represents the unknown decrement of the 
boundary-layer displacement. Finally the pressure-displacement interaction via the 
upper deck outside the original boundary layer requires the law 

( 2 . l e )  

to be satisfied, for incompressible fluid/subsonic flow, with the bar denoting the 
principal value of the Cauchy-Hilbert integral. 

The context of the problem (2 .1  u-e) for boundary-layer instability is described by 
Smith (1979u, b)  and in the related paper SB. Here we need note only that the 
traditional skin-friction factor h(x) has already been scaled out, and that the 
properties of (2.1u-e) are of concern for all values of the reduced fundamental 
frequency 52 = O(la/ClT(). As the above references observe, an increase in the value 
of 52 results either from a downstream movement of our observation position x or 
from an increase in the fundamental frequency of the disturbances present. I n  
particular the basic steady flow, U = Y ,  P = A = 0, is linearly unstable/stable for 
52 5 Q,, where QC = 2.30, and a stable supercritical bifurcation occurs for 52 just 
exceeding 52,. Our concern however is with the high-frequency supercritical properties 
(see figure 1 )  where 52 is large, as in SB. In  SB i t  is shown that an initially small 
disturbance for 52 large goes through two stages, 1 and 2, as the disturbance amplifies. 
Stage 1 is controlled by a weakly nonlinear modulation which, somewhat unusually, 
affects the phase but not the amplitude of the exponentially growing disturbance. 
In the subsequent stage 2 stronger nonlinearity then comes into play, leading to  the 
Benjamin-Ono equation for the displacement: see further comments in $6. The 
present paper re-addresses stage 1 ,  in view of the following feature. When 0 is large 
any disturbance, although unstable, has only a relatively small growth rate, and to 
leading order the corresponding spatial wavenumber a is real and large, being given 

a = a + O ( Q - f ) ,  (2.2) 
by 

from the dispersion relation of linear theory (SB, equation (2 .5) ) .  Hence the group 
velocity cg cc U / d a  is real then, to  leading order. In  consequence a packet of waves 
travelling at the group velocity can be considered, with their small growth being 
balanced by their nonlinearity and by the relative dispersion in the streamwise 
direction. This in turn allows an initial-value problem to be posed, starting from an 
initially bounded state, as seems preferable on physical grounds. 

We reconsider stage 1 of the high-frequency short-scaled disturbances, therefore. 
As in SB the flow solution expands in the form 

Y = 52-f $ho+52-' $h1+52-t $h2+ ... ) ( 2 . 3 ~ )  

u= uo+SZ-~u1+52-'u,+ ..., (2.3b) 
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FIGURE 1. Schematic diagram (not to scale) of the travel, nonlinear growth and spreading of a 
relatively high-frequency TollmienSchlichting disturbance introduced into the boundary layer, 
according to the triple-deck structure. See $2. 

in a Stokes sublayer where Y = S1-4 z is small. The pressure and negative displacement 
have the corresponding developments 

P = a p , + p , + Q - t p 2 +  ..., 
A = A 0 + Q - ~ A , + Q - 1 A , +  .... 

( 2 . 3 ~ )  

(2.3d) 

Unlike in SB, however, the temporal and spatial dependences are both now 
considered to be of the multi-scaled type, with 

a a a a  
-+G?--+a-+-+ ..., 
aT aq, a q  a q  
a a a  -+-t-+-+Q-l 
ax ax, ax, ax2 

a 
s-+ ... 

( 2 . 4 ~ )  

(2.4b) 

In addition, the extra intermediate variables X, ,  are introduced here. The relative 
slowness of the T,, T,, . . . and X,, X, . . . derivatives is implied by the known relation 
(2.2) combined with the relative nonlinear effects, as in SB. The successive governing 
equations resulting from formal substitution of (2.3u-d), (2.4a, b) into (2.la, b) are 
then 

(2.5a, b )  

a l l . 2  

aZ u, =-, 

au, au, au, au, au au0 -+-+-+ u,-+u ' + u  - aq, a q  a q  ( ax, ,ax, lax, 

( 2 . 7 ~ )  
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The nonlinear contributions are enclosed in the brackets in (2.6b) and (2.7b). The 
boundary conditions on the sets of unknown functions ($o ,  uo,po, Ao), ($,, ul,pl, A,),  

u, = @, = 0 at z = 0 (2.8a) 

uo+A,, u1 N %+A, ,  u,+A, as z + c o ,  (2.8b) 

($2, u,,p,, A,) above are 

(n = 0,1,2),  

from (2.lc, d), while the pressure-displacement law (2.1 e) gives 

( 2 . 8 ~ )  

(2.8d) 

(2.8e) 

in turn. It is observed that the basic velocity profile ( U  = Y )  affects only the second- 
and higher-order terms directly, through the contribution z in u, in (2.8b), because 
in the current sublayer I UI is much larger than I YI. 

AtJirst order, where (2.5a, b )  apply with (2.8a-c), the solution has the form 

(@O?U09P0 ,AO)  = ($017U01?p017A01) E+c'c', (2.9) 

E = exp(ia,X,-iT,), (2.10) 

with C.C. denoting the complex conjugate of the preceding bracket. Here 

the real 0(1) constant a. is to be found, and $,,, etc. are independent of X,, T,. From 
(2.5a, b ) ,  ( 2 . 8 ~ )  with (2.9) we obtain the results 

uol = aopol ( l -eemz)7  $ol = a0p0,(z-m~'emz+m-'), (2.11a, b )  

where m = exp (fzi). So (2.8b) then yields A,, = aopo,. But from (2.8c), with (2.9), 
~~ 

pol = I a, 1 Aol. Hence 
tI.0 = 1, A,, = Po,. (2.12a, b )  

Here the result (2.12a) is in line with the linear result (2.2), as it should be. The 
dominant pressure term pol remains an unknown function of X,, X,, . . . , T,, T,, . . . . 

At second order, both nonlinearity and the basic flow profile first enter into the 
reckoning, through (2.6b) and (2.8b). Accordingly, higher harmonics and a mean-flow 
correction are generated, in addition to there being more of the fundamental 

u1 = (u12 E2 + ~ 1 ,  E) + C.C. + uIM (2.13) disturbance. Thus 

and similarly for @,, p,, A,, with the (X, ,  %)-dependence appearing solely in E ,  E2 
in (2.13). The mean-flow correction ulM inferred from (2.6a, b )  is exactly as in SB, 
as also is the higher harmonic u,,, and so in particular 

ulM N %+AIM, U ~ ~ + A , ,  as z - t ~ ,  

where = lp0112, = %lZ = -%' 01 7 (2.14) 

whileplM remains arbitrary. The new effect here, the extra fundamental ull in (2.13), 
is found to be given by 

(2.15) 
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from (2.6b), (2.8a), given (2.9), (2.11a)-(2.12b) and (2.13). Therefore in view of (2.8b) 
A,, is equal to the contribution in square brackets in (2.15). On the other hand, the 

aPol ( 2 . 1 6 ~ )  
interaction (2.8d) now yields 

A,, =p,,+i-. ax1 
Eliminating A,,, then, we have the equation 

-+2- pol = 0 (& a:) (2.16b) 

controlling the variation of pol on the intermediate (X,, %)-scales. This implies that 
at  the current level pol = po,(E,) is an unknown function of 6,  E X, - 2T, only, in line 
with the amplitude of the wave packet travelling at  the effective group velocity, which 
is 2a x 2L$ from (2.2), i.e. twice the dominant wavespeed. 

The third-order balances (2.7a, b )  finally yield the main amplitude equation for pol 
since they reproduce nonlinearly the fundamental proportional to E.  If u, is written 
as 

u, = ( U 2 1 E + U 2 2 E 2 + U 2 3 P ) + C . C . + U Z M ,  (2.17) 

with similar expressions for $,,p2, A,, then uZ1, $,,,p,,, A,, satisfy the equations 

( 2 . 1 8 ~ )  

with the boundary conditions of no slip at z = 0, and 

u,,+A,, as z+oo ( 2 . 1 8 ~ )  

(2.18d) 

Here in (2.18b) the nonlinear contributions are grouped in brackets again, while * 
stands for the complex conjugate, and the constraints (2.18c,d) stem from (2.8b,e) 
respectively. So, letting z+oo in (2.18b) and then applying (2.18c,d), which 
eliminates the extra fundamentals p,,,  A,, here, we obtain the relation 

on use also of the previous results derived at first and second order. In  (2.19) the 
contributions involving AIM and A,, mark the influences of the second-order Stokes 
steady streaming and second harmonics and they alone induce the nonlinear effects 
present. The other contributions are all higher-order linear responses in essence. 

The correction p,, of the fundamental may be taken to vary with the group 
velocity, i.e. to depend only on El = X,-2T, at this level. Hence, upon substitution 
for A,,, AIM from (2.14), the relation (2.19) becomes a generalized cubic Schrodinger 
equation governing pol, 

aPol ia21)ol = (1-i) 5i 
- Po1 --ij Po, IPO, I -- 

a q  ax; 2/2 
(2.20) 
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Here, on the left-hand side, the temporal derivative holds with the coordinate 
6, = X2-2T, kept fixed, corresponding again to movement of the wave packet with 
the scaled group velocity of 2, while (2.16b) has been used to  produce the double 
spatial derivative appearing, which perhaps more properly is a2po, /a~~.  On the 
right-hand side, the first term provokes the linearized growth expected of the present 
supercritical disturbances ; i t  is in agreement with the linear dispersion relation 
(Tietjens function) for high frequencies and it represents a viscous effect of the Stokes 
sublayer, as distinct from the main wave in (2.10), which is an inviscid feature. The 
second term on the right-hand side of (2.20) is the nonlinear influence. Its most 
significant aspect is that  its coefficient, the StuartrLandau constant - ii, is purely 
imaginary. This means that in the context of SB, where the possible spreading due 
to  the X, scale is ignored in (2.20) (and a /aT ,  is replaced by -2a/aX,, so that spatial 
development is then under consideration), the nonlinearity has no effect on the 
amplitude Ipol I, which therefore continues to grow exponentially just as in linear 
theory: see also $5 below and Benney & Maslowe (1975). The lack of either 
suppression or enhancement of the amplitude growth by the nonlinear forces 
proportional to pol  Ip,, I 2, combined now with the extra spatial dependence or 
spreading effect proportional to a2po,/i3X; due to the real group velocity present, 
makes the integration of (2.20) for the dominant unsteady pressure response pol rather 
interesting. The double spatial derivative also allows an initial-value problem for pol 
and subsequent evolution in time T, to be more properly examined than in SB, with 
now a compact disturbance present satisfying (pol I + O  as I X, I -+ 00. Similar equations 
are derived and/or studied by Stewartson & Stuart (1971), Hocking & Stewartson 
(1972) and Benney & Maslowe (1975) for the evolution of wave packets in other 
through flows. Complete descriptions for cases such as (2.20), however, with purely 
imaginary coefficients in the second and fourth terms, and with spatial non-periodicity, 
do not appear to  have been given previously in the literature: see also $6 and 
Appendix A. The main properties of (2.20) for the initial-value problem are discussed 
in $$4, 5. 

3. Non-parallel flows 
The above arguments can be extended to  include certain interesting flows which 

when undisturbed are nonparallel on the short triple-deck scale X,, as happens for 
instance in breakaway separation, trailing-edge flow and flow over surface-mounted 
humps. This is in contrast to the relatively passive non-parallelism of the Blasius 
boundary layer, for example, on the longer x-scale. The influences of the short-scale 
non-parallelism are considered in SB and some of the working can be brought forward 
from that reference, although here we put a different interpretation on the resulting 
properties: see also Smith (1985). 

The flow of concern now is governed by (2.1u-e) again but with, say, 

U -  Y+A(X,T)+F(X) as Y-too  (3.1) 

replacing (2.1 d )  for a reduced hump shape F ( X ) .  A steady-state motion therefore has 
U ,  Y,  p, A depending non-trivially on both X and Y ,  examples of such motions being 
given in the reviews by Messiter (1983) and Smith (1986). One effect of this, in the 
unsteady high-frequency case considered in $2, is to add a term -ix(Xl)pol to the 
right-hand side of (2.16b), thus yielding the result 

Po, = a o l ( E 1 )  exP[- ; i j~(X, )dX, l ,  (3.2) 
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since the X, scale coincides with X. Here qol is an unknown function of E;,, while A 
is the steady-state solution for A ,  i.e. the (non-parallel) solution of (2.la-c, e )  with 
(3.1) and a/aT = 0, but with F absorbed into 2 for convenience. So the phase, but 
not the amplitude, of the dominant pressure coefficient pol now depends on the fixed 
coordinate X, as well as on the moving one El = (X1-2T,). Second, the mean flow 
in the zone where Y is 0(1)  is still found to satisfy the steady-state problem, which 
fixes 2, p. The third effect of note comes into the amplitude equation controlling p o l ,  
which now has the terms 

added to the left-hand side of (2.19), apart from a small mean-flow correction. Here 
p is the steady-state solution for the pressure p. Hence, for the X, and (X1-2T,)- 
dependence to balance out, it follows that pll must contain the contribution 

(3.4) 

among others. That leavesp,, (or rather qol) still satisfying the equation (2.20) derived 
earlier. The fourth main effect to record here is that the mean-flow shear stress a t  
the wall is now A(X,) + 2ilp,, I (in scaled terms), where A(X,) is the reduced skin 
friction associated with the steady-state flow solution. 

The above serves to reinforce the value of solving (2.20), a matter discussed in the 
next two sections. However, (3.4) shows that the non-parallelism present can still have 
some impact, for whereas the dominant pressure amplitude lpoll is uniform on the 
intermediate X, scale (see (3.2)) the main correction-pressure amplitude Ip,,J is not, 
in general. Thus the question of whether small-amplitude growth or decay occurs on 
the fixed X, scale is decided primarily by (3.4), i.e. by the local pressure and 
displacement. If these effects ever become sufficiently large, then the growth or decay 
associated with (3.4) can become a leading-order influence : see also $6 below. Another 
type of non-parallel-flow effect, corresponding to trailing-edge motions in particular, 
should also be mentioned here. The analysis in $ 2 continues to apply in the interactive 
part of the wake of a flat plate, or thin airfoil, provided account is taken of the 
continuous-stress condition replacing the no-slip constraint there. This alteration 
leads to the coefficient of the pol term in (2.20) being replaced by zero in the wake 
part of the flow field. So, as the governing equation (2.20) holds in the moving frame 
of E;, = (X, - 2T,) kept fixed, the result is that if the disturbance pol starts off upstream 
of the trailing edge it is controlled at  first by (2.20) but then, as it progresses 
downstream, the linear-growth coefficient (of pol) becomes equal to zero, since 
6, > -2T, in effect. This therefore has a stabilizing effect on the disturbance 
amplitude as the disturbance passes the trailing edge. A further extension of the 
analysis can be made, and is currently being considered, to include the influence of 
a basic unsteady motion, e.g. due to an oscillatory hump, although then the extra 
unsteady forcing has relatively little effect unless it is of high frequency. For the O( 1 )  
time (%)-derivative in ( 2 . 4 ~ )  is of relative order 52-' and so any basic T,  dependence 
first appears actively at  the third order, affecting only the phase of the correction 
pressure pll, not its amplitude. In  consequence a basic-flow dependence on the 
timescale T,, as at  an oscillating trailing edge for instance, is a quasi-steady affair 
represented primarily by the X, dependence in the basic A(X, ,T , )  and p(X,,T,) 
functions, so far as the amplitude response of high-frequency disturbances is 
concerned. 
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4. Numerical method and results 
As far as the author is aware, the nonlinear Schrodinger equation (2.20) for the 

pressure is not (yet) solvable by inverse-scattering techniques, and in any case there 
seems to be a general acknowledgement that direct numerical integration is perhaps 
more appropriate for obtaining explicit results from such equations. We performed 
the necessary numerical work for (2.20) as follows, after setting 

- iT, 
PO, = ($ exp (T) B(X,,  T,) 

to convert (2.20) to the form 

.aB a2B i 
l-+---B-BlB12 = 0 a% ax: d2 

for B(X,,  T,). The boundary conditions here are IBI + O  as X ,  .+ f co and the initial 
distribution B(X, ,  0) is assumed known. 

Then if B = C+iD, where C and D are real, the complex equation (4.2) may be 
split conveniently into four real first-order equations, 

-aD 36 1 
-+++-D- ( (c2+D2)C=0 ,  aq ax, d2 

ac ab 1 -+---c- (C2+02)  D = 0, a% ax, 1 / 2  

(4.3a, b )  

(4.3c) 

(4 .3d)  

for C, D ,  e, B. These may be discretized in a fairly standard finite-difference form, 
with second-order accuracy in time and space, on a uniform grid 
X, = X-, + (i - 1) A = XlZ, for i = 1 to I ,  with small mesh size d in X, and with a 
uniform small timestep 6 in T,. Here the end points X- ,  and X,, = X - ,  + ( I -  1 )  A 
are suitably large and negative/positive respectively. If the subscript i denotes an 
unknown function value at  X, = Xli and the superscripts (o), (n) stand for evaluation 
at the successive time levels T,-6,  T,, then the numerical approximations used for 
I4.3a-d) are, for i = 2 to I .  

(4 .44  

(4.4b) 

DP) + Dip\ - Dp)  - D{:)l 
26 

- ei:), 
+ A  

- 

+8-:[ol“’+D{~’l]-B[(cr’+C,(~’l)2+ ( D I B ’ + D ~ ~ l ) 2 ] [ C ~ ’ + C , ( & _ ]  = 0, ( 4 . 4 ~ )  

2s 

- 8-;[CP) + Cj?,] -Q[(Cp’ + Ci?’l)2 + (Or’ + D{?\),] [Or’ + D e l l  = 0 ,  

cp + ciq - cp - cp’ Sl”’ - Sp1 -’+ 
(4 .44  

where is the unknown average value i [ Z ( n ) + Z ( o ) ]  for any quantity 2. So, 
with the (0) values known, (4.4u-c) combined with the end conditions 
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0 10 20 30 
XI 

FIQURE 2. The computed amplitude IBI versus X,, at various times T,, from $4. Initial distribution 
symmetric, B = 1/3 exp ( -AX:) .  Symbols 0, show the effects of halving X,, (with A ,  8 fixed) 
and of halving A ,  S (with X,, fixed) respectively. 

Cy) = DY) = Cp) = Of") = 0 provide the necessary 41 nonlinear equations for the 41 
unknown (n) values a t  the next time level. The nonlinearity of these 41 equations 
is treated by a Newton iteration procedure which is repeated until all successive 
iterates differ in magnitude by less than q. Typically q = lo-'. The matrix inversion 
associated with each Newton iteration here is accomplished primarily by Gaussian 
elimination. Given the initial distribution B(X,,  0 ) ,  and hence C ,  D,e, initially, then. 
the calculations can be advanced forwards in timesteps 6. The typical value taken 
for S was 0.001 for an X, grid having 1 = 121, A = 0.2, but checks on the effects of 
mesh sizes were made, and these are described below. 

Representative solutions are presented in figures 2 and 3. I n  the former example 
an initial distribution symmetric about X, = 0 was set and the calculations were 
performed first for 0 < X, < X,, with symmetry imposed at X, = 0 for all T,  > 0, 
and second for X-, < X < X, without the symmetry condition. The two sets of 
results obtained were virtually identical over the time range T,  investigated. I n  the 
example of figure 3 no symmetry is present. Both figures also show checks on the 
influences of the temporal and spatial mesh sizes chosen. The checks suggest that 
sufficient numerical accuracy is maintained up to  values of T, which are not too large. 
Another test applied concerned mainly the representation of & co by X,, in turn 
and is worth mentioning here. We transformed to  a stretched working coordinate x, 
defined by X, = XJ(1 -xl), so that 0 < x, < 1 corresponds formally to the entire 
domain X, 2 0, and we considered the cases symmetric about X, = 0. With uniform 
steps in x, now, from X ,  = 0 to x, = 1, it was found that the numerical solutions 
so derived agreed very closely with the previous ones in the bulk of the original domain 
of interest 0 < X, < X, for a fairly large range of time T,: see also $6 below. This 
tends to support further the evidence of the tests shown in the figures. The 
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FIGURE 3. Numerical solution for the amplitude JBJ versus XI, a t  various T,, for the nonsymmetric 
initial form R = exp (3X,-~fX~)/[1 +exp ( 3 X , ) ] .  Symbol 0 shows the effect of halving A ,  6 with 
X,, kept fixed. A slight ‘flop in the solution is noticeable at early times. 

calculations were continued to times larger than those shown in the figures but the 
effects from grid sizes and/or the end values X,, became more pronounced then. 

Although the numerical studies cannot be exhaustive of course, the suggested 
trend, from the above results and other calculations done by the author, is one of 
spreading and growth of the disturbance amplitude as time T, goes on. That leads 
on to  the analysis in the next section concerning the properties of the solution for 
larger times T,. 

5. Properties for large time/far downstream 
The solution of (2.20) or (4.2) is believed to take on a limiting form with an 

increasingly wide spread in X, and large amplitude as T, + co , i.e. for large times and 
far downstream in terms of the coordinate X,, since 6, is kept fixed above. This 
large-time behaviour is described below. 

First, for convenience, we set B = exp (yT,) R exp (ie) where y is a real O(1) 
constant to  be specified later and R, 8 are real functions of X,, T,. Then (4.2) yields 
the two real equations 

(5.1 a) 

(5.1 b )  
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for R, 8.  It is observed here, for subsequent comparison, that for the plane wave 
considered in SB the solution of ( 5 . l a ,  b )  simply has a/aX, ZE 0 and 

y = 4d2,  R = constant, 8 = --e2yTz+constant, 

so that the amplitude IBI grows like exp(T,/1/2) then for all time T,. For the 
evolution problem of current concern, i.e. ( 5 . l a ,  b )  with R+O as I X , ~ + C O ,  an 
argument based on orders of magnitude also suggests an exponentially growing 
amplitude for larger T2 but accompanied by an exponential spreading in terms of the 
spatial coordinate X,. Thus as q+ co we propose that 

(5 .2 )  
R2 

2Y 

R = yR,(r]) + . . . , 8 = y e2yTz # ( r ] )  + . . , , (5 .3)  

where X, = eyTz r] and R,, q5, r] are generally 0(1), while y is assumed to be positive 
and controls the amplitude growth IBI oc exp(yT,). Substitution of (5.3) into ( 5 . l a ,  
b)  leaves a t  leading order the coupled nonlinear ordinary differential equations 

74’ - 2# - #I2 = Rt, ( 5 . 4 ~ )  

(P+#”)R, = (11-2#’)K (5.4b) 

for R,(r]), q5(q), the prime standing for d/dq, and the constant /3 = (y -  1 /42) /y  is 
unknown. It is interesting to note that the double-derivative term a2R/i3X; is the only 
term in ( 5 . l a ,  b )  not to contribute to (5.4a, b ) .  In (5 .4~3,  b )  we require R,( & CO) = 0. 

The determination of the constant /3 in (5.4a, b )  is important now but this can be 
resolved by appeal back to (5.1 b) .  Multiplication of (5.1 b )  by R(X, ,  q), followed by 
integration with respect to XI from - 00 to 00, and then integration with respect to 
T,, gives the integral property 

‘X 00 

R2(X, ,  T,) dX, = s_, R2(X,, 0) dX, exp [(d2-2y) T,1 L (5 .5)  

for all times T,  2 0, with the integrals assumed to be convergent. Since the large-time 
form in (5 .3)  makes the left-hand side in (5 .5)  of order exp(yT2), the balance 
y = d2-2y  is required, yielding the value 

Y = i d 2  (5.6) 

for the growth- and spreading-rate factor y. Also, from (5.3)-(5.6), the integral 
property 

J-‘X J-’X 

holds for the large-time solution. 
So from (5 .6)  the constant /3 = -+. Equation (5.4b) is then satisfied if #’ = t q ,  or 

#(?I) = a(r2-9)? ( 5 . 8 ~ )  

where b is an unknown constant; alternative forms of solution in which q5’ + ?jr] appear 
to be inadmissible. Given (5 .8a) ,  the solution for R,(q) follows from (5 .4a) ,  which 
yields the elliptical shape 

R,(r]) = +(b-q2)* for -b: < r] < b:. (5.8b) 

Here b must be positive, while 

R,(r]) = 0 forlr]l > b?, ( 5 . 8 ~ )  
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FIGURE 4. 
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Sketch of the large-time behaviour of the effective pressure amplitude 
X , ,  according to $5. 

A 

PI 

XI 
I I  

I 

0 [exp ( - h' 27'JI 

Sketch of the large-time behaviour of the effective pressure amplitude 
X , ,  according to $5. 

I B J ,  versus 

which again satisfies ( 5 . 4 ~ ,  b) provided that vq5' = 2q5 + f 2  for Iq I > bi. The relatively 
thin adjustment zones, required near q = f bi to join smoothly the solutions (5.8b, 
c), are considered subsequently. The constant b, however, can be determined 
immediately from the constraint (5.7). This gives the value 

in terms of the initial conditions at time T, = 0. 
The adjustment zones near q = +bi  have thickness O(e-iYT2), thus bringing the 

highest spatial derivative a2R/aX; back into play (see figure 4). By symmetry we need 
consider only the adjustment zone near q = d ,  wherein f i  = (XI - bi eYT2) eiyTz is of 
O( 1). There (5.8a-c) suggest the large-time expansions 

R = e-fyTz go($ + eP2yT2 El($ + . . . , (5 .10~)  

0 = ( b b )  e2yT2 + (iybi) fiebT2 + e-tYTz @($ + . . . , (5. l o b )  

where we postulate that  q5, q5' are continuous a t  7 = bi. Substitution of (5.10a, b) into 
the governing equations (5.1 a, b) leaves z0(fl controlled by the nonlinear Airy 
equation - 

dyi 
-- d2Ra - (ibiy2) fi& + R:. (5 .11~)  

The boundary conditions here are 

&$ - y (Y$( - f l i  asfi+--oo, (5.11b) 

&J(f l+O as fi-+co, (5.11~) 

the former to  match with the end of the ellipse in (5 .8b) ,  while the latter is necessary 
for ( 5 . 8 ~ ) .  The controlling equation for @($, also from (5 . la ,  b ) ,  is 

(5.11d) 
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which can be solved, subject to  the constraint @ x as f+  - co, consistent with 
(5.11 b )  and matching (5.8a), once &(fl is fixed by (5.11~-c). The equation (5.11~) 
however is a form of the second Painlev6 transcendent, which is discussed by Hastings 
& McLeod (1978), who prove the existence and uniqueness of the solution to (5.11 a-c). 
Hence the adjustment between (5.8a, c) near 7 = bi is achieved. This completes the 
leading-order account for the large-time far-downstream behaviour of the system 
(2.20) [i.e. (4.2) or (5.la, b ) ]  governing the flow response during stage 1 of the 
development of the disturbance. 

6. Further discussion 
The ultimate behaviour of the nonlinear disturbance packet, during the current 

stage 1, occurs at large times T, and correspondingly large distances X, downstream, 
since the disturbance travels fast at the scaled group velocity 2 a .  The ultimate 
behaviour ($5) is marked by an exponential growth in amplitude (of the pressure, 
displacement and so on) accompanied by an exponential rate of spatial spreading. 
The amphtude-growth rate here is two-thirds of the value for fully periodic 
disturbances, from comparison of (5.6) with (5.2), independently of the initial 
conditions, whereas the spreading rate is dictated by an  integral property of the initial 
conditions, in view of (5.9). That integral property is essentially l y m  1 pressure I dX 
evaluated at time T,  = 0, and i t  is significant that  this gives the sole influence of the 
initial disturbed conditions on the ultimate behaviour downstream. According to this, 
even for highly erratic initial conditions, such as the white-noise kind used 
experimentally by Gaster (1984) and computationally by Bretherton & Spiegel 
(1983), the ultimate large-time behaviour during stage 1 can be predicted by $5, as 
long as the flow remains planar (see later). 

The computational results in $4 tend to favour qualitatively the ultimate form 
predicted in $5, with regard to the growths of both the amplitude and the spreading 
as time T, increases. Quantitatively, approximate values of the ratio [a I Bl/X!JIBI 
evaluated at XI = 0 in figure 3 for instance are 0.33 for time = 1.45 and 0.38 for 
T,  = 1.95, which are not inconsistent with the limiting value of ;1/2[=0.4714] 
proposed in $5. Even firmer comparisons are rather hindered by the difficulties in 
continuing the computations to larger times without significant effects (including 
wave reflections from X+,) coming into play due to  the finite grid dimensions. The 
influence of the end values X,, was found to be particularly strong in that respect, 
as one would expect from the exponential spreading predicted in $5 for large times: 
see the following paragraph. 

A few comments on certain other studies of the present evolution equations (4.2) 
or closely related ones are appropriate here. First, Appendix A addresses the high- 
and low-amplitude properties and concludes that the full equation must be considered 
in both cases : cf. Bretherton & Spiegel(l983) on the high-amplitude case for a slightly 
different Ginzburg-Landau equation. Further, it is noteworthy that, for the initial- 
value problem again, the effect of nonlinearity in the initially low-amplitude case is 
to reduce the amplitude-growth rate but greatly increase the spatial spreading rate, 
compared with the predictions of linear theory. Next, we observe that the large-time 
structure described in $5 is distinct from those of Hocking & Stewartson (1972), the 
current evolution equation being in effect a special example not considered in the last 
reference : see also Lange & Newel1 (1974). Finally here, various theoretical aspects 
of closely similar evolution problems are considered by Bretherton & Spiegel(1983), 
Kuramoto (1978), Moon, Huerre & Redekopp (1982), Bullough, Fordy & Manakov 
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(1982), Huppert & Moore (1976) and Kogelman & DiPrima (1970), some of whom 
indicate the formation of chaotic or disordered states. This is still a rather open 
question, although the spatial periodicity which is most often assumed in other 
studies where chaotic behaviour is found [for an exception see Nozaki & Bekki 19831 
seems of much reduced relevance in the present context of boundary-layer motion. 
Our calculated results did appear to  take on a somewhat chaotic form at larger times 
whenever the outer boundaries X, ,  were not sufficiently remote and so yielded 
significant reflections, but there was no firm evidence of disorder otherwise in stage 
1 and, in any case, the large-time limiting structure discussed in $5 seems to be a 
stable though transient one (see Appendix A and Stuart & DiPrima 1978). This last 
comment would seem to apply also even to the ultimate effects of large and/or 
non-smooth initial conditions such as the white-noise kind, during the current stage 
1 : see however comments on the subsequent stage 2 below. 

Another aspect concerns the relevance and further implications of the present 
high-frequency analysis. I n  Appendix B two computational treatments of the full 
triple-deck problem (2.lu-e) are described (see also Smith 1984; Duck 1985) for the 
initial-value problem, involving numerical forward marching in time T. One set of 
computations takes spatial periodicity in X, the other does not. Samples of the 
results are presented in figures 5 and 6. The set of spatially periodic results, while 
being rather difficult to interpret or to apply directly to the physical problems of 
concern, nevertheless does exhibit the predicted feature of an exponential growth in 
the amplitude of short-lengthscale disturbances even when nonlinearity, represented 
by the higher harmonics, comes into play. I n  addition the calculated timescale agrees 
well with the high-frequency theory. When spatial periodicity is not assumed, as in 
the second set of results, there is again good agreement with the theoretical 
predictions concerning the temporal and spatial scales of the main wave packet as 
it proceeds fairly fast downstream. Thus the high-frequency analysis is, at the least, 
a useful predictor of, or check against, the finite-frcquency numerical properties, and 
the latter tend to  confirm the appearance of fast-moving disturbances far downstream 
or at later times, with eventually some irregular behaviour setting in then: see also 
the subsequent remarks on stage 2. More than that, however, the analytical properties 
support, on a widened basis, most of the theoretical conclusions reached in SB. In  
particular, the mean of the wall-shear stress 7, = aU/a Y ( X ,  0, T )  is given by 

(6.1) 
during the current stage 1 and so, in view of $5, mean-7, rises exponentially fast, 
with increasing time and distance, while the temporal oscillations about the mean 
also increase dramatically. This is quite reminiscent of some transitional boundary- 
layer behaviour in practice. 

Again, a stage 2 emerges subsequently as in SB, although the current initial-value 
problem slightly delays the onset. Stage 2 is a more nonlinear stage, where on inviscid 
grounds the nonlinear Benjamin-Ono equation takes effect in place of (2.12u), but 
subject to eruptions of vorticity or ‘spikes’ from a viscous sublayer which is the 
nonlinear extension of the Stokes sublayer and, as in stage 1, the disturbance size 
is much greater than that of the basic flow. This stage 2 has some connections with 
the work of Gatski (1983), Walker & Abbott (1977) and Walker & Scharnhorst (1977). 
Higher-order properties bring in spatial modulation akin to that studied in the 
present paper. Still higher frequencies, or shortened lengthscales, lead on to the Euler 
equations holding across the entire boundary layer, with vorticity emissions/spikes 
then also coming from the viscous wall layer present. 

Reconsidering stage 1, we note that the present enlargement of SB’s work to  wave 

mean-T, = 1 + 4 2  Ip,, 1 
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packets relies on the fact that the scaled group velocity is real, and equal to twice 
the main wavespeed. (A similar enlargement is also possible in Gajjar & Smith’s (1985) 
work on nonlinear critical layers.) Thus the wave packet overtakes individual 
travelling waves, a feature which is somewhat in line with Criminale & Kovasznay’s 
(1962) calculations, even if the latter are for three-dimensional linear disturbances. 
There is some qualitative agreement also with Gaster’s (1 984) experimental findings 
of amplitude growth in the disturbed flow not too far downstream of a regularly or 
erratically vibrating source: compare the first paragraph of this section. We remark, 
incidentally, that in some wavemaker problems for water waves the operator 
(ia/T,+a2/aX;) on the left-hand side of (4.2) may best be regarded instead as the 
operator (2ia/aX2 + F2/i3q) involving only a single spatial derivative, suggesting the 
imposition of a single upstream constraint spatially in X , .  The physical relevance of 
this replacement in the boundary-layer context is doubtful because (4.2) holds in a 
moving frame (fixed X ,  - 2T,), so that the wavemaker would also have to move to have 
effect. A travelling free-stream disturbance would be of interest, by contrast. More 
significantly, however, in Gaster’s experiments, as in Saric et al. (1984) and Herbert 
( 1984), three-dimensional behaviour is believed to exert a crucial influence experi- 
mentally as the disturbance amplitudes continue to rise, and for that reason a further 
extension of the present work to three-dimensional nonlinear developments (among 
other things) is very desirable. In the experiments, say for a fixed-frequency vibration 
upstream, broadening of the power-spectrum response is a significant factor down- 
stream, whereas in the present two-dimensional analysis for stage 1 any broadening 
appears to be relatively minor (compare the comments on stage 2 in the next 
paragraph). For, supposing we start with an initial Gaussian distribution for the 
effective pressure B, in $4, then the corresponding Fourier transform is a Gaussian 
distribution concentrated around the main frequency SZ. However, the ensuing form 
downstream ( $ 5 )  has the enlarged, elliptical shape of (5 .8b)  and therefore the 
transform becomes (cc) a Bessel function, with a longish ‘tail’ producing some 
spectrum broadening, but with the power spectrum generally being more concentrated 
around SZ, unlike in experiments. The two-dimensional case studied here does lead 
to many features of interest, we feel, and it creates a useful and rational starting point, 
but bearing in mind the nonlinearity present it remains to be seen whether the 
three-dimensional version for stage 1 is merely a passive extension of this or not. A 
study along these lines has recently been started. 

By contrast, stage 2 further downstream is likely to exhibit spiked or erratic 
behaviour, with spectrum broadening, even for two-dimensional flow, as noted in 
Appendix B, and possibly featured in figures 5(b)-(d). For, in stage 2, the viscous 
wall layer induced has a classical unsteady-boundary-layer form, which breaks down 
(SB) by causing a spiked emission of vorticity through a highly localized singularity 
in the layer’s displacement. This irregular behaviour downstream, along with 
secondary instabilities of the Rayleigh kind and similar (Smith & Bodonyi 1985 ; Tutty 
& Cowley 1986), suggests a good qualitative link between the theory and the recent 
computational solutions of the unsteady Navier-Stokes equations, likewise confined 
to two dimensions, in Fasel’s (1984) paper, where spikiness and spectrum broadening 
are found numerically in the more-downstream flow. Once solutions of the theoretical 
stage-2 problem are obtained, a quantitative comparison could be very illuminating. 
We conclude, then, that the two-dimensional unsteady interactive-boundary-layer 
equations or a composite form can capture much of the physics involved in the 
beginnings of the transition process although, on the other hand, three-dimensionality 
is without doubt an important element which will need to be included in due course. 

A final comment concerns the non-parallel-flow effects considered in $3. These 
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effects can be substantial for certain flows, in view of the contribution (3.4). The net 
linear growth rate of disturbances, for instance, is proportional to (d2 - 3dx/dX,) 
at leading order, and so, formally, amplitude growth can be suppressed in flows where 
the local displacement decrement slope dx/dX, exceeds 5 4 2 ,  which makes sense 
physically, as noted in SB. Again, although the dominant pressure p,, grows 
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FIGURE 5. Computed spectral solution of the unsteady triple-deck problem (2.la-e), for a = 4. (a) 
Real part of the pressure fundamental P, (-) versus T. 0, results for halved AT- and AY-steps 
with Y ,  fixed; x ,  Y,  doubled; 0,  for N increased to 9. The bars indicate the theoretical 
high-frequency period according to (2.2). (b) Higher harmonics, compared with their theoretical 
periods. (c) The amplitudes versus T. (d )  The calculated pressure for N = 5, 7, 9. 

exponentially fast in the moving frame of (X, -2T,) ,  the correction pressure p,, can 
grow even faster in some non-parallel circumstances. A prime example is that  of 
breakaway separation, where the incremental displacement -z(X,) increases in- 
definitely like Xi while P - + O  far downstream as X1-+c0 [a similar event occurs 
upstream where z,2, grow like (X,(f ,  IX,lt respectively]. The relative effect of the 
correction pressure above is then proportional to JZ-iXi and so becomes substantial at 
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FIGURE 6. Finite-difference solution of the unsteady triple-deck problem, showing P vs. X at three 
times T. The effects of halving all the step sizes, with Y,  fixed, and of doubling Y, with fixed step 
sizes, are denoted by 0 ,  x respectively. Also shown (H) is the theoretical travel from T = 0.80 
to 1.12 according to the high-frequency theory. 

distances X, of order sz? downstream. A useful interpretation of this feature is in 
terms of the mean wall-shear stress, which here is 

(6.2) 

(cf. (6.1)). An initial disturbance [poll made in the original reversed flow, say, where 
A(&) < 0, travels downstream, growing and spreading, and induces a mean-flow 
re-attachment ultimately, but with the re-attachment point proceeding downstream 
a t  the group velocity. At distance O ( a )  downstream, however, formally the 
correction-pressure influence can stop this travel, since that influence is controlled 
by the fixed -X, scale. Such an effect may well be connected with the turbulent 
re-attachment often observed experimentally downstream of a laminar separation : 
see also Smith (1985). 

mean-7, = A@,) + 2/2 Ip,, I 
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Appendix A. Further aspects of the nonlinear evolution equation 
Several other relevant aspects of the evolution equation (2.20) studied in If4 and 

5 are discussed briefly below. 
First, rather similar systems are considered by Bretherton & Spiegel (1983), 

Kuramoto (1978), Moon, Huerre & Redekopp (1982), Bullough, Fordy & Manakov 
(1982), Huppert & Moore (1976) and Kogelman & DiPrima (1970), but usually there 
are crucial differences from ours in the end conditions, e.g. spatial periodicity is 
assumed (see below), or in the signs or complexity of the coefficients, and associated 
with this, and as a referee notes, there are more unstable wavenumbers in the present 
system. Only Bretherton & Spiegel’s work seems directly relevant, although there 
again spatial periodicity is imposed and the coefficients involved are still slightly 
different from those in (2.20). Bretherton & Spiegel note a useful analogy with 
water-layer motion, an analogy which we extend a little here. Taking y = 0 in (5.1 a, 
b), so that B = R exp(i8) now, and with R2 = HE, M l a X ,  = H h ,  X ,  = AT, 
T, = AH-%, (&la ,  b) reduce to the equations 

provided that the amplitude parameter H is large and the lengthscale A satisfies 
H-4 4 d 4 Hi. Here (A l), (A2) are exactly the inviscid shallow-water equations. The 
terms neglected in them are of relative orders H-lA- , ,  AH-; and stem from the highest 
derivative a2R/aX; and the growth term -R/1/2 in (5 . la ,  a ) .  For such a 
high-amplitude disturbance then, (A 1)’ (A2) can be solved by characteristics, for 
increasing time t. After a finite time t ,  however, a ‘shock’ is inevitable, starting at 
some value of Z. Within the shock shorter time- and lengthscales, of orders H-l, H-i 
respectively, therefore come into operation to smooth out the discontinuities of the 
(inviscid) solution: see also the next paragraph. With those scales a fuller set of 
equations applies, with only the above-noted growth term absent then. This set is 
equivalent to a standard cubic Schrodinger equation and admits stable solitary and 
modulated-carrier waves. At larger times the complete equation (2.20) is reinstated 
eventually, even for this extreme of a Zarge-amplitude initial disturbance. A t  the other 
extreme, for s m l l  initial disturbances, the linearized form of (2.20) can be solved 
analytically by means of a Fourier transform in X , ,  giving 

27cp0,(X,,T,) = e x p [ ( l - i ) z ] s m  &(w) exp[iwX,-io2T,] do, (A 3) 
1/2 -m 

where & ( w )  is the transform of the initial pressure disturbance. For an initial Gaussian 
distribution, for instance, we have the explicit solution 

27cp0,(X1,T,) = exp 

where 6 is a real constant. Hence the small disturbance grows in amplitude 
exponentially fast and spreads spatially (in a Gaussian form, from (A3) or (A4)) with 
IX,l cc a (for waves) and T, (for amplitude dependence), at large times T,. So again, 
at larger times, due to nonlinearity coming back into play, the full system (2.20) is 
reinstated. The above extremes confirm the need to address (2.20) computationally, 
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as was done in $4. A further comment concerning (A4) is that, if 6 is purely imaginary, 
a singularity results at a finite time, T, = f 16 1 -', but this comes from unrealistically 
strong wave-like conditions at  large X,. 

If, next, spatial periodicity or spatial confinement is present, as in Bretherton & 
Spiegel(1983), then the growing plane-wave solution noted in (5.2) appears to be the 
most likely terminal form for large T,. Its stability, for any T,, as well as that of the 
unbounded form (5.3) to some extent, can be tested by examining a small disturbance 
( cd ,8 )  for R, 8, governed by 

from (5.la, b), where proportionality to exp (i&X,) is assumed. From (A5), (A6) and 
with 8 given in (5.2), the disturbance I?(%) is controlled by the Bessel equation 

a 2 8  aR 
as as S 2 ~ + ~ - + 2 2 ( 0 i 4 + 2 0 i 2 R 2 ~ ' ) R  = 0 

with s = exp (yT,). The corresponding Bessel functions show that there is no growth 
in the disturbance I? for any wavenumber c2 as time, and hence s, increases. This is 
tantamount to the conclusion that the Benjamin-Feir (1967) secondary-instability 
mechanism does not occur in the present two-dimensional motions, a conclusion 
which can be verified for the more general case (5.3) also. On the other hand, a factor 
exp (YE) has been absorbed into (5.la, b). Thus although g decays like s* according 
to (A7), i.e. like exp (-3YT,), the actual disturbance exp (y!&)Z? grows like exp (32''). 
This growth is small relative to the growth of the basic solution (5.2), but it is growth 
nevertheless and it could account for the extra oscillations sometimes observed in 
the numerical solutions ($4) at larger times, not dissimilar to those found by 
Bretherton & Spiegel (1983) and perhaps of a somewhat random nature. It can be 
shown analytically, however, that more sizeable (nonlinear) dips of amplitude 
O(exp (yT,)) and X, scale of O(exp ( -  yT,)) cannot persist for large times !& in the 
spatially periodic case. 

Appendix B. Computational solutions of the unsteady triple-deck flow 
Numerical solutions of the original unsteady triple-deck problem (2.1 a-e) were 

obtained in two different ways, as mentioned in $6 and in Smith (1984) and 
summarized below. 

Method (i) is a spectral approach to (2.1~-e), in which spatial periodicity over a 
prescribed length 2n/a is assumed. The flow variables are expressed as the Fourier 

series W 

[ u, 'y, P, A1 = X [u,( Y ,  TI, $n( Y ,  T ) ,  p,( T), an(T)l exp (imx) P I )  
-W 

with unknown coefficients u,, $,, p,, a,. Formal substitution of ( B l )  into (2.la, b) 
therefore yields coupled differential equations in Y, T for u,, $, with the coefficients 
p,, a, determined by the boundary and matching conditions (2.1 c-e). This coupled 
system is truncated at N terms and solved iteratively at each time level. The 
techniques used here are those of Smith, Papageorgiou & Elliott (1984), the main 
difference being the determination of the mean flow to satisfy the displaced shear 
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condition u, - Y + a, as Y + 00. Time-marching is performed in the Crank-Nicholson 
manner as in method (ii) below. Typically (see also figure 5) the value of N is set at 
7 and a Y-grid of 101 x 0.1 is taken, transformed as in (ii) below, with a timestep of 
0.001 and an overall tolerance per timestep of in the maximum pressure 
difference. Results are shown in figure 5 for an initial disturbance given by u, = Y 

(B 2) 
and, for n 2 1 ,  

(1  + i)[(2 Y- Y") e-', 13 
(n+ 115 

[Un, Pnl = 

at T = 0, with the value a = 4 which is nominally supercritical. As was remarked in 
$6, the temporal evolution of a representative property of the fundamental agrees 
well with the linear and weakly nonlinear theory of high frequencies for stage 1. This 
is until stronger nonlinearity comes into force at later times, and then the calculations 
become more difficult and are rather sensitive to the grid sizes and the series 
truncation adopted, although the results then are quite possibly in line with the 
features expected for the subsequent stage 2, as mentioned near the end of $6. 

In method (ii) we take finite differencing in X, Y, T of second-order accuracy, and 
march forward in time T, solving at each time level by sweeping the (X, Y)-plane M 
times to obtain convergence. The differencing and notation used are similar to those 
in $5 with respect to the X- and T-dependence, while for the Y-dependence we choose 
a box technique. The momentum equation (2.1 b) for instance is thereby represented 
as 

where AX, BY, AT are the steplengths, the subscripts i, j refer to the X- and 
Y-directions in turn, 7 = aU/aY, and the values a t  i-i, j-i denote the means of 
the values at i, i-1 and j, j - 1  respectively. Thus at each half-time level(@ the 
computational task is analogous to that for steady subsonic-flow problems and so we 
adapt the approach of Smith & Merkin (1982), where more details are available. Local 
updating of the pressurdisplacement relation (2.1 e) is imposed at each X-station 
in the Veldman-Davis fashion (Veldman & Dijkstra 1980; Davis 1984), with Newton 
iteration to handle the nonlinearity, while to accommodate the far-field conditions 
imposed, (2 .14  and (U, Y , P , A ) + ( Y , + Y 2 , 0 , 0 )  as IXl+oo, both the X- and Y- 
coordinates are transformed. Windward differencing in X has also been included to 
allow for flow reversals. Once the solution at the current half-time level(&) has 
converged, after M sweeps, the solution at the time level(*) follows from 
( = 2( )(a) - ( ) ( O ) ,  schematically, and the time is then stepped forward to the next 
level. Typically (see also figure 6) we took steplengths 0.004, n/200, 0.1 in T and the 
transformed X, Y, respectively, while 2-3 Newton iterates were required per X-station 
and M was usually about 3 4 ,  to satisfy a tolerance of on the maximum difference 
in pressure per sweep of the flow field. The overall accuracy, which is no more than 
graphical, has also been checked against calculations done in the original untrans- 
formed coordinates X, Y .  A sample result is shown in figure 6. Some preliminary results 
for flow due to maintained oscillations of a hump were given by Smith (1984) and 
in a report by the author to the Science and Engineering Research Council, U.K., 
in 1981. In  figure 6, by contrast, the hump given by Y = [2/(1 +X2)] sin (QT), with 
Q = 4, is maintained only for times T up to 0.1 and then abruptly switched off. This 
effectively sets up an initial-value problem for the subsequent times. It is found that 
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a wave packet propagates downstream, as described in $6, its features tying in 
reasonably well with the high-frequency theory. At later times a more erratic response 
emerges. Similar downstream-travelling behaviour could also be observed in the 
earlier results for maintained oscillations of a hump. 
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